
Journal of Statistical Physics, Vol. 96, Nos. 5�6, 1999

Note on Two Theorems in Nonequilibrium Statistical
Mechanics
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An attempt is made to clarify the difference between a theorem derived by
Evans and Searles in 1994 on the statistics of trajectories in phase space and a
theorem proved by the authors in 1995 on the statistics of fluctuations on phase
space trajectory segments in a nonequilibrium stationary state.
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Recently a Fluctuation Theorem (FT) has been proved by the authors
(GC), (1) for fluctuations in nonequilibrium stationary states. Considerable
confusion has been generated about the connection of this theorem and an
earlier one by Evans and Searles (ES) (2) so that it seemed worthwhile to
try to clarify the present situation with regards to these two theorems.

In a paper in 1993 by Evans, Cohen, and Morriss, (3) theoretical
considerations lead them to a computer experiment about the statistical
properties of the fluctuations of a shear stress model (viscous current��or
the related entropy production rate��in a thermostatted sheared viscous
fluid in a nonequilibrium stationary state.

The Fluctuation Relation found in the simulation, (3) reads in current
notation for sufficiently large {, (1):

?{( p)
?{(&p)

&e{_+p (1)
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Here ?{( p) is the probability of observing an average phase space contrac-
tion rate (which in the models considered has the interpretation of average
entropy production rate) of size p_+ on one of many segments of duration
{ on a long phase space trajectory of the dynamical system modeling the
shearing fluid in a nonequilibrium stationary state; here _(x) will denote
the phase space contraction rate near a phase point x (i.e., the divergence
of the equations of motion) and _+ is the average phase space contraction
rate over positive infinite times so that p is a dimensionless characterization
of the phase space contraction (with time average 1). The approximation
within which Eq. (1) was observed was very convincing.(3)

Under suitable assumptions, see below, Eq. (1) was derived in ref. 1 in
the form (clearly already intended by the authors of Eq. (1)):

lim
{ � �

1
{_+

ln
?{( p)

?{(&p)
= p (2)

Later several other computer experiments have confirmed the relation
Eq. (2).(4�6)

The original computer experiment, (3) was inspired by a theoretical
argument for the relative probabilities to find a phase space trajectory
segment of length { in a state x with phase space contraction rate p and in
a state x$ with rate &p. These theoretical considerations lead to the correct
prediction Eq. (1), which was confirmed by the computer experiment
whose validity, however, does not rely on the theory. Although the
theoretical arguments in favor of (1) in ref. 3 contain hints for a theoretical
derivation of (1) based on the SRB distribution and the use of time rever-
sal, these hints cannot be regarded as constituting a proof or justification
of (1) and (2).

In 1994, Evans and Searles(2) gave a derivation of a theorem which
had a similar form as Eq. (1). More precisely: let Ep be the set of initial
conditions of a dynamical system for phase space trajectories along which
the phase space contraction is e&p_+T in a time T. We denote by +L(Ep) its
Liouville measure. Similarly, let +L(E&p) be the Liouville measure of the
corresponding set of phase space trajectories along which the phase space
contraction in time T is e p_+T. Quite generally, and in all models con-
sidered in the literature relevant here, E&p=IST Ep , if St is the time evolu-
tion (Liouville) operator of the system, so that t � St x is the phase space
trajectory at time t starting at x at t=0, and if I denotes the time reversal
operation. Hence E&p , the set of points around which phase space con-
tracts at rate &p_+ T, is obtained by evolving forward over a time T those
in Ep (which would contract by p_+T ) and then inverting the velocities by
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the time reversal operator I. In fact, the sets Ep and E&p are those con-
sidered by Evans and Searles in ref. 2.

Then the proof in ref. 2 is the following:

+L(Ep)
+L(E&p)

=
+L(Ep)

+L(IST Ep)
=

+L(Ep)
+L(ST Ep)

=
+L(Ep)

+L(Ep) e&p_+T =e p_+T (3)

where one has used that the Liouville distribution is time reversal invari-
ant, i.e., +L(E )#+L(IE ) (although it is not stationary) to get the second
equality as well as the definition of phase space contraction in the third
equality.

The arbitrary time interval T includes the short times referring to the
transient behavior of the system before possibly reaching the nonequilib-
rium stationary state. In the derivation of Eq. (3) only time reversal sym-
metry is used. Later, (7) it was argued that under this assumption alone,
Eq. (3) also holds in the nonequilibrium stationary state +� , since Eq. (3)
is valid for any T and the Liouville distribution +L would evolve in a
sufficiently long time T into a distribution ST+L arbitrarily close to a non-
equilibrium stationary state +� .

Therefore the Eq. (3) was asserted in ref. 7 to be stronger than Eq. (2)
(i.e., to imply it), which, however, refers to the statistics of trajectory
segments, along a trajectory in a chaotic nonequilibrium stationary state +� ,
not to the statistics of independent trajectory histories emanating from the
initial Liouville distribution +L under the time reversibility assumption.

In 1995 the authors proved Eq. (2) based on a dynamical assumption,
called Chaotic Hypothesis (CH), which assured Strong chaoticity (``Anosov
system-like behavior'') for the systems for which Eq. (2) held. In that work
the name Fluctuation Theorem (FT) was first introduced for Eq. (2), and
was proposed as an explanation for the experimental result Eq. (1). We will
call this the GCFT.

It is worthwhile to emphasize again that, while the right hand sides of
the Eqs. (1) and (3) look very similar, they, as well as the left hand sides
of these equations, really refer to entirely different physical situations.

Equation (3)(2) holds for any T on trajectories with initial data sampled
from the Liouville distribution at t=0 and it can be considered as a simple,
but interesting, consequence, for reversible systems, of the very definition of
phase space contraction. We will call it here the ESI, where the I refers to
``identity.'' The ESI is much more general than the FT in Eq. (2), which
needs, in addition to phase space contraction (_+>0) and time reversal
symmetry, also the Chaotic Hypothesis. The proof of the ESI, fully
described in Eq. (3) above, is identical in essence to the proof in ref. 2
which is much more involved.
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In order to illustrate the fundamental difference between the two
theorems we first give an example of a very simple case where the more
general ESI Eq. (3) holds, while the GCFT Eq. (2) does not.

To that end we consider a single charged particle in a periodic box,
with charge e moving in an electric field E, i.e., a Lorentz gas without scat-
terers, and subject to a Gaussian thermostat (to obtain a nonequilibrium
stationary state):

q* =p, p* =eE&:p (4)

where the ``thermostat'' force &:p, with :=eE } p�|p|2, assures the reach-
ing of a nonequilibrium stationary state of this system.

In this case one can solve explicitly the trivial equations of motion
Eq. (4) and check that the Liouville distribution +L indeed evolves towards
a stationary state +� , which is simply a state in which the particle moves
with constant speed parallel to E. The ESI Eq. (3) will hold for the phase
space trajectories of this system sampled with the initial Liouville distribu-
tion +L , but it will not be a fluctuation theorem, since there are no fluctua-
tions. Also, GCFT's Eq. (2) will not hold for the phase space trajectory
segment fluctuations of this system, which is not a contradiction because
the system is not chaotic.

From this simple example and other similar ones, follows that the two
theorems cannot be equivalent, and the validity of Eq. (3) cannot imply
much, without extra assumptions, about the fluctuations (absent in this
case) in the stationary state. Note that Eq. (3) is an identity which is
always valid in the systems considered. The system of Eq. (4) is therefore
a counterexample to the statement that Eq. (3) implies Eq. (2), i.e., to the
statement, (7) that ESI implies GCFT.

Second, and more interestingly, one can try to derive the GCFT
Eq. (2) from the more general ESI Eq. (3). One could then try to proceed
as follows.

First one would need to show that on a subsequent trajectory segment
of length {, after time T, the ratio of the probabilities of finding a phase
space contraction of +p_+{ to that of finding &p_+{ over this segment
of length {, would be given by e p_+{. Here p_+{ is any preassigned value
of the phase space contraction. However, Eq. (3) gives no information
whatsoever about the points in S&T E\p which after a time T evolve into
points which in the next { units of time show a phase space contraction
\p_+{. In other words, the ESI does not contain the detailed information
needed to derive the GCFT.

If one adds the Chaotic Hypothesis to the time reversal symmetry
assumptions made about the dynamical system in the ESI, one could use
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Sinai's theorem, (8) to assert that such a system, starting from the initial
Liouville distribution +L , will indeed approach a chaotic nonequilibrium
stationary distribution +� supported (however) on a fractal attractor A
with zero Liouville measure +L(A)=0. This is, in this case, the SRB dis-
tribution, +SRB , of the system, which was used in ref. 1. However, for a
proof of the GCFT, details of the SRB distribution are needed, which con-
tain just the details considered in ref. 1. That is, one has to make an
appropriate (Markov) partition of the phase space and assign weights to
the cells of increasingly finer partitions leading, to the SRB distribution.
This then allows one to assign appropriate weights to those regions (of zero
Liouville measure) in phase space that will give rise, to phase space contrac-
tions on trajectory segments { of \p_+{ leading to the GCFT.

A more precise comparison between the ESI and GCFT requires a
more quantitative statement of the latter result. Namely, (1) Eq. (2) can be
derived from the stronger relation:

?{( p)
?{(&p)

=e( p_++O(T��{)) { (5)

where T� is a time scale of the order of magnitude of the time necessary
in order that the distribution ST +L , into which the Liouville distribution
+L evolves in time T, be ``practically'' indistinguishable from the stationary
state that we denote by +� . Here the validity of the fluctuation relation (1)
for asymptotically long times { is more clearly expressed. The existence of
the time T� and its role in bounding the error term in Eq. (5) are among
the main results of ref. 1. The time T� appears in refs. 1 and 10 as the range
of the potential that generates the representation of +� as a Gibbs state
using a symbolic dynamic representation of the SRB distribution on the
Markov partition.(8)

Examining the ESI derivation above, one easily sees that the following
relation

(ST +L)(Ep)
(ST +L(E&p)

=
+L(S&T Ep)

+L(S&T E&p)
=e( p_++O(T�{)) { (6)

can also be derived.(11)

It is important to note that the argument leading to Eq. (3) cannot say
more than this: in particular one must justify why T��which in principle
should be large, strictly speaking infinite, so that ST+L be identifiable with
+SRB ��can in fact be taken smaller than {.

Justifying this requires assumptions (as the above counterexample
indicates) like the mentioned Gibbs property of the SRB distribution which
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is even stronger than requiring exponential decay of correlations (also
implied by the CH). Otherwise, without extra assumptions, one has to say
that T has to be taken infinite first with the result that Eq. (6), hence
Eq. (3), becomes empty in content. Of course one can argue that ``on physi-
cal grounds'' T needs not to be taken infinite but just as large as some
characteristic time scale for the approach to the attractor: but the precise
meaning of this, and the assumptions under which it can be stated, is
precisely what needs to be determined particularly because in non-
equilibrium systems the attractor A is fractal with +L(A)=0 and one can
very well doubt that the ST+L distribution is ever close enough to the +�

distribution to allow comparing Eq. (5) and (6). This requires a convincing
argument, were it only because (ST +L)(A)=0

Very recently a paper appeared, (12) which addresses again the same
questions of ref. 7. It gives further evidence of the difference between ESI
and GCFT. Their experiment gets ESI when they test it and FT when they
test that. From our point of view the results had to be expected: in the first
case because ESI is a rigorous identity and in the second case because we
believe that out Chaotic Hypothesis applies to the experiment so that
CGFT should hold.
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